Сенсационная история Земли
Самая распространенная версия гибели планеты Фаэтон – столкновение с неким неизвестным космическим телом. То ли с какой-то иной планетой Солнечной системы, то ли с «пришельцем извне»…
При всей простоте этой версии у нее есть и серьезные изъяны.
Во-первых, траектории осколков в Поясе астероидов уж слишком близки к единой траектории всего одной планеты. Столкновение двух планет, которое привело бы к их разрушению, скорее всего имело бы своим результатом гораздо более широкий разброс траекторий осколков с самыми разными значениями как по эксцентриситету («вытянутости» орбиты вокруг Солнца), так и по углу наклона к плоскости эклиптики (основной плоскости вращения тел в Солнечной системе). Однако этого не наблюдается – количество астероидов, имеющих подобные траектории, ничтожно мало по сравнению с общей популяцией Пояса астероидов.
И во-вторых, сомнений в «ударной» версии добавляет Пояс Койпера. Разрушение одной планеты в системе из всего десятка штук в результате столкновения с каким-то иным телом – уже событие экстраординарное. А разрушение сразу двух – представляется совсем маловероятным. Тем более, что Пояс Койпера также в целом обладает весьма компактной формой, связанной опять-таки с единой траекторией.
Естественно, что возникает проблема поиска каких-то иных – и прежде всего внутренних – причин.
Для «общепринятых» моделей планет с железо-никелевым ядром и силикатной мантией такие причины придумать не так уж и просто, а вот модель с гидридными недрами вполне такую возможность предоставляет. Ведь процесс выделения водорода (процесс дегидридизации) из недр может происходить с разной интенсивностью. И при достижении большой скорости этот процесс может перейти в разряд имеющих взрывной характер.
Медленная дегидридизация, как следует из самых простых рассуждений, вряд ли серьезно отразится на судьбе планеты в целом. А вот быстрое интенсивное выделение водорода и других возникающих попутно флюидов вполне может привести к ее разрушению – фактически «взрыву изнутри». И это вполне могло стать причиной гибели как Фаэтона, так и «планеты Койпера» (назовем ее условно так).
Отметим, что при этом как раз мы имеем условия, вполне согласующиеся с особенностями параметров траекторий подавляющего большинства астероидов в двух «поясах» Солнечной системы…
Автоматически возникает вопрос – а что ждет нашу планету?.. Ведь как следует из полученных ранее результатов, процесс расширения Земли не просто продолжается, а постепенно ускоряется во времени на протяжении последней пары сотен миллионов лет, и конца этому ускорению пока не видно (см. Рис. 71)…
* * *
В принципе, возможно два основных варианта: при полной потере ядром водорода в конце концов процесс расширения заканчивается; и другой вариант – планета не выдерживает темпов дегазации, и выделяющийся из недр водород разрывает ее на куски.
Если внимательно посмотреть на наших соседей по Солнечной системе, то можно, оказывается, найти примеры, которые иллюстрируют (по всей видимости) последствия обоих вариантов возможного развития событий.
Скажем, ближайшая к нам соседка, Луна, уже давно завершила, как считается, свою геологическую историю. На ней не обнаруживается ни вулканических, ни тектонических процессов (если не учитывать наблюдений Н.Козыревым и другими исследователями очень слабой остаточной вулканической активности). И вот, что интересно: различие в составе пород лунных материков и морей качественно аналогично различию между материковой и океанической корой Земли!!!
Луна |
SiO2 |
Al2O3 |
FeO |
MgO |
CaO |
TiO2 |
Na2O |
K2O |
"океаны" |
43,76 |
10,31 |
19,69 |
8,76 |
10,60 |
5,38 |
0,38 |
0,09 |
"материки" |
46,23 |
21,29 |
7,73 |
9,68 |
12,64 |
0,87 |
0,51 |
0,18 |
Табл. 7. Состав лунных пород
Поэтому представляется вполне вероятным, что на Луне также имела место водородная продувка недр, которая могла сопровождаться и увеличением размеров планеты. Но тогда по распространенности пород можно попытаться восстановить прошлое Луны.
Оценочные расчеты показывают, что если было изменение размеров Луны, то оно не превышает всего десятка процентов (по радиусу). Ясно, что это вполне логичный результат: меньшие размеры планеты предполагают меньшее количество водорода и меньшее время его взаимодействия с породами в ходе подъема из недр к поверхности планеты. Естественно, что в недрах Луны и совершенно иные условия по давлению и температуре, которые, по всей логике, гораздо ближе к мирному варианту развития событий.
Интересно также отметить, что материковые породы Луны близки к современным земным базальтам. Это и понятно: внутри Луны вполне могли и не сложиться условия, необходимые для включения активного взаимодействия водорода недр с кислородом, которые на Земле отвечали за процесс гранитизации (см. ранее).
Сопоставление земных пород с лунными дает еще один интересный факт.
Известно, что, начиная с периода протерозоя (приблизительно последние 2–2,5 млрд. лет назад по принятой геохронологической шкале) изменение состава формирующихся пород на Земле имело вполне определенную тенденцию: изверженные породы вместо кислого (наиболее насыщенного щелочными металлами) постепенно стали иметь средний, а затем и основной состав, как бы иллюстрируя химический результат длительной умеренной водородной продувки недр.
Так вот: породы Луны вполне укладываются в эту земную тенденцию, как бы продолжая ее. Если материковые лунные породы близки к современным основным базальтам Земли, то океанические лунные породы – к ультраосновным. Луна и тут как бы демонстрирует окончание мирного сценария водородной эволюции Земли…
Теперь обратим свое внимание на других своих соседей по Солнечной системе, но не на планеты, а на метеориты, среди которых подавляющее большинство составляют хондриты – каменные метеориты. Их состав оказывается довольно близким к составу земной коры.
Но вот, что выясняется при внимательном анализе: по содержанию основных составных элементов каменные метеориты образуют единый ряд изменений, в который можно выстроить земные породы (с протерозоя и далее) и лунные породы !!! (см. Табл. 8 и Рис. 170).
Элемент |
Континенты |
Океаны |
Лунные породы |
каменные метеориты |
|||
гранит |
базальт |
базальт |
базальт |
материки |
моря |
||
16,9 км |
21,7 км |
1,2 км |
5,7 км |
||||
железо |
4,37 |
7,33 |
6,74 |
7,92 |
6,01 |
15,31 |
15,50 |
кислород |
47,70 |
45,60 |
45,74 |
44,22 |
44,64 |
41,53 |
41,00 |
кремний |
29,49 |
25,63 |
21,85 |
23,11 |
21,57 |
20,42 |
21,00 |
магний |
1,79 |
3,84 |
3,87 |
4,76 |
5,81 |
5,26 |
14,30 |
алюминий |
8,14 |
7,56 |
7,53 |
8,20 |
11,27 |
5,46 |
1,56 |
кальций |
2,71 |
5,78 |
9,18 |
8,03 |
9,02 |
7,57 |
1,80 |
натрий |
2,11 |
1,82 |
1,68 |
2,02 |
0,38 |
0,28 |
0,80 |
сера |
0,064 |
0,077 |
0,048 |
0,058 |
- |
- |
1,82 |
титан |
0,32 |
0,50 |
0,74 |
0,89 |
0,52 |
3,23 |
0,12 |
калий |
2,40 |
1,10 |
0,65 |
0,20 |
0,075 |
0,037 |
0,07 |
фосфор |
0,07 |
0,07 |
0,04 |
0,10 |
0,09 |
0,05 |
0,10 |
марганец |
0,074 |
0,13 |
0,18 |
0,14 |
0,13 |
0,19 |
0,16 |
углерод |
0,27 |
0,12 |
1,19 |
- |
- |
- |
0,16 |
Табл. 8. Сравнительный состав каменных метеоритов с земными и лунными породами
![]() Рис.169 Луна |
![]() Рис.170 Единый тренд изменений в составе метеоритов, земных и лунных пород |
![]() Рис.171 Структура головы кометы |
Из таблицы и особенно из рисунка видно, что получаемая последовательность (граниты – андезиты – материковые базальты Земли – океанические базальты Земли – лунные материковые базальты – базальты лунных морей – каменные метеориты) настолько отчетливо прослеживается по основным своим составляющим, что вряд ли может быть случайной. В этой последовательности заметно снижение содержания кислорода, кремния и калия и увеличение концентрации железа, магния, титана, марганца (в меньшей степени кальция).
Из этого следует сразу же несколько очень серьезных выводов. Прежде всего: явное увеличение концентрации железа по мере продвижения по ряду в корне противоречит гипотезе, в соответствии с которой этот элемент постепенно в эволюции планет опускается к центру недр, то есть в ядро. Здесь мы можем наблюдать совершенно противоположный процесс. Видимо, в результате водородной продувки недр определенная часть железа выносится ближе к поверхности.
Но гораздо более важным является то, что ряд подтверждает ранее сформулированный вывод: гипотеза о том, что метеориты являются остатками «первичного вещества», из которого сформировалась Солнечная система, явно не верна! Ведь каменные метеориты (коих большинство) являются, скорее, результатом некоей химической эволюции, а не ее начальными условиями, судя по тенденции этой эволюции на Земле и Луне.
Далее. Каменные метеориты по своему химическому составу являются, вполне вероятно, результатом мощной водородной продувки в условиях, приближенных к тем, что мы имеем в мантии Земли. Логическим выводом из чего является (также уже ранее упомянутая) гипотеза: каменные метеориты являются осколками некоторой планеты (скорее всего Фаэтона), входившей в состав Солнечной системы и не выдержавшей в свое время бурного выделения водорода из своего гидридного ядра.
Достаточно очевидно, что другой крайний вариант состава метеоритов, а именно состав так называемых железных метеоритов, тоже оказывается на стороне этой гипотезы. Железные метеориты содержат более 90% железа, 8,5% никеля и 0,6% кобальта (концентрация же других элементов не превышает 0,1%). Если каменные метеориты – осколки Фаэтона из состава его мантии, претерпевшей сильнейшую водородную продувку, то железные – судя по всему, осколки ядра того же Фаэтона.
Видно, что состав железных метеоритов вполне согласуется с возможным гидридным ядром как Земли, так и близкого ей Фаэтона. Только здесь мы имеем место не с гидридами металлов, а с их остатками: водород покинул их либо в процессе расширения планеты Фаэтон (при дегидридизации ядра), либо (что даже более вероятно) – при взрыве Фаэтона. Когда давление на осколках ядра почти мгновенно упало до нуля после взрыва, оставшийся в них водород неизбежно должен был очень быстро покинуть еще горячие осколки (вспомним про высокие температуры в недрах планеты и учтем, что температура не могла понизиться также быстро, как и давление).
Вдобавок, гипотеза о природе метеоритов как осколков сильно эволюционировавшей планеты, а не как остатков первичного вещества Солнечной системы гораздо лучше объясняет различие между ними по составу. Если считать, что каменные метеориты представляют из себя осколки из мантии Фаэтона, а железные – из его ядра, то (помимо логичной картины по химическому составу) становится очевидным и преобладание каменных метеоритов в общем их числе: ведь мантия, например, Земли занимает порядка 80% объема всей планеты.
Примечательно также, что состав метеоритов в этом случае дает нам возможность лучше представить и строение современной Земли, которое оказывается не так уж резко отличающимся от имеющейся модели. Действительно, соотнесение каменных метеоритов с мантией Фаэтона хорошо согласуется с общепринятой схемой силикатно-окисной мантии Земли (преобладание соединений с кремнием и кислородом). И если по общепризнанной модели ядро у нашей планеты железо-никелиевое, то химический состав железных метеоритов также вполне с этим согласуется. Это совершенно, впрочем, не противоречит тому, что ядро Земли насыщено водородом, а металлы, его составляющие, находятся там не в чистом виде, а в гидридных соединениях.
Заметим попутно, что входящие в состав железных метеоритов три основных элемента: железо, никель и кобальт, являются ближайшими соседями в таблице Менделеева и обладают, во многом, схожими свойствами. Поэтому их соседство в железных метеоритах, как остатках гидридного ядра Фаэтона не удивительно, а для «первичного вещества» Солнечной системы подобная диспропорция элементов просто необъяснима.
* * *
Ясно, что если взрыв Фаэтона имел место, то в условиях открытого космоса столь малые осколки планеты как астероиды (они же – метеориты при падении на Землю) довольно быстро должны были потерять основную массу находившегося в них водорода, который в дальнейшем как выдувался с бывшей орбиты Фаэтона солнечным ветром, так и рассеивался в окружающем пространстве. Именно поэтому мы не наблюдаем сейчас в Поясе астероидов никакого облака или иного скопления водорода.
Поскольку же осколки от взрыва должны были разлететься во все стороны, а процесс их дегазации не был мгновенным и должен был занять какое-то время, постольку ряд из них мог быть отброшен на дальние расстояния от Солнца в область низких температур, так что весомая часть водородно-водного (ведь водород взаимодействовал, как мы видели, с кислородом) флюида могла замерзнуть и не успеть испариться. Поэтому в качестве еще одной гипотезы вполне можно допустить, что по крайней мере некоторая часть комет Солнечной системы представляет собой такие осколки Фаэтона с замерзшим флюидом.
В этом случае при приближении по вытянутой орбите таких осколков к Солнцу и прогреве их солнечными лучами будет происходить частичное испарение такого водородно-водного флюида с выбросом его за пределы осколка. При этом флюид (в состав которого вполне могут входить и другие газы, образующиеся в мантии в ходе ее «водородной продувки») может прихватывать с собой мелкие частицы вещества осколка в виде пыли. Данный механизм представляется вполне логичным и возможным для образования газо-пылевого хвоста комет, растущего с уменьшением расстояния до Солнца и наоборот – уменьшающегося с удалением кометы от Солнца.
Это также вполне согласуется и с соображением, что в Поясе астероидов осколки Фаэтона практически полностью потеряли свой водород, так как на таком расстоянии от Солнца кометы уже имеют заметные хвосты, что говорит об активном процессе дегазации из них флюида.
Данную версию единства происхождения комет и астероидов автор высказывал еще в 90-е годы (когда доминировали представления о кометах, как о «ледяных» телах). Новейшие исследования комет в последнее десятилетие приносили только подтверждения этой версии. Ученые «с удивлением» обнаружили, что ядро кометы вовсе не является ледяной глыбой, а практически ничем не отличается от привычных астероидов…
Любопытно, что версия комет как своеобразных «астероидов с незавершенной дегазацией» позволяет дать новое объяснение и трансформации со временем некоторых комет в метеоритные потоки. Активная дегазация вещества внутри астероида-кометы вполне может способствовать его самостоятельному разрушению без каких-либо дополнительных столкновений с другими космическими объектами. Особенно это может быть характерно для тех комет, в которых сохранился не только «излишний» флюидный газ, но и какая-то часть гидридов. Тогда при нагреве с приближением к Солнцу в такой комете будут интенсифицироваться не только процессы дегазации, но и процессы расширения вещества внутри кометы, что вполне понятным образом может спровоцировать ее распад на части…
Стоит вспомнить, что Пояс Койпера (см. Рис. 135), который также упоминался ранее в качестве возможного результата взрыва некоей планеты, является основным «поставщиком» короткопериодических комет. Естественно, что на столь дальней орбите в силу низких температур процесс дегазации осколков взорвавшейся планеты с большей степенью вероятности не закончился, и комет при взрыве «планеты Койпера» должно было образоваться больше, чем при взрыве Фаэтона.
И уж если продолжать логическую цепочку, то стоит обратить внимание и на долгопериодические кометы, которые, как считаются, связаны с неким «облаком Оорта», расположенным далеко за пределами известных планет Солнечной системы. Ранее это «облако» предполагалось более-менее равномерным и сферическим. Ныне, благодаря продвигающимся исследованиям, на иллюстрациях сфера хоть и сохраняется, но появляются явные подвижки в направлении трансформации сферы в очередной диск!..
В связи с этим возникает вполне естественный вопрос: а не является ли «облако Оорта» остатками еще одной планеты, которая ранее обитала глубоко на задворках нашей Солнечной системы, а впоследствии была разрушена внутренними силами в результате активного расширения?..
* * *
Итак, по всей видимости, в нашей Солнечной системе мы можем наблюдать оба возможных альтернативных варианта будущего нашей планеты. При этом пример катастрофического варианта, судя по всему, вовсе не уникален... В связи с чем появляется закономерный вопрос: не пойдет ли Земля по пути Фаэтона?..
Вряд ли можно дать абсолютно точный ответ на данный вопрос при современном уровне наших знаний. Хотя сомнительно, чтобы процесс водородного взрыва (не термоядерного синтеза, а дегазации недр!) мог длиться целые сотни миллионов лет. Скорее, это все-таки похоже на эволюцию по мирному пути. Поэтому судьба Фаэтона нас вряд ли ожидает...
Вполне возможно, что вообще с темпами и условиями расширения нашей планеты нам очень крупно повезло. Она умудрялась менять свои размеры и поставлять из недр такой состав флюидов, что жизнь хоть и «встряхивало» периодически, но она на планете все-таки сохранялась.
Между тем, например, Марс (в свете гидридной теории) вполне можно рассматривать как планету, на которой расширение было не очень интенсивным, а выделение газов было настолько слабым, что там ныне имеет место лишь очень разреженная атмосфера. Сама же планета, судя по всему, исчерпав ресурс внутренних источников энергии, ранее поставлявшейся наверх потоком флюидов из недр, медленно, но неуклонно остывает.
![]() Рис.172 «Облако Оорта» |
![]() Рис.173 Поверхность Марса (снимок аппарата «Викинг») |
![]() Рис.174 Поверхность Венеры |
Иная ситуация сложилась на другой нашей соседке – Венере. Стадия «вспучивания» поверхности планеты поднявшимся потоком газов в самом начале расширения носила для нее катастрофический характер. Мощнейшие трапповые излияния лавы (а лавовые поля на Венере как раз наиболее похожи именно на траппы – когда через трещины в коре верхние слои магмы выдавливаются на поверхность поднимающимся флюидным потоком) буквально переплавили все ее старую кору. Вырвавшиеся при этом из-под коры газы сформировали ту плотную и ядовитую атмосферу, которую мы и наблюдаем ныне. Если там и были когда-либо перед этим условия, хоть сколь-нибудь пригодные к жизни, то никакая жизнь подобной катастрофы заведомо пережить не могла. И если судить по косвенным признакам (например, по продолжающейся вулканической активности и высокой температуре на поверхности), которые указывают на то, что процесс расширения планеты продолжается, перспектив для жизни на Венере в ближайшем обозримом будущем нет никаких…