Сущность и Разум Том 2

Рубрика: Левашов

Рис.175

Рис.175 — проекция четвёртого тела на уровне физической клетки изменяет качественное состояние микропространства на уровне физической клетки. Качественное состояние внутриклеточного пространства изменяется, возникает дополнительное смещение мерности микропространства и во внутреннем объёме спиралей молекул ДНК и РНК. Это дополнительное смещение мерности приводит к тому, что начинают распадаться на первичные материи молекулы, которые ранее сохраняли свою устойчивость. При этом происходит увеличение мощности восходящих потоков первичных материй, создаваемых клеткой в единицу времени. В результате этого увеличивается плотность насыщения восходящими потоками первичных материй всех без исключения тел клетки. Максимально это сказывается на степени насыщения третьего тела клетки в силу того, что на уровне этого тела восходящие потоки первичных материй не успевают рассеяться в значительной степени. И поэтому, плотность насыщения первичными материями третьего тела становится критической и возникает обратный поток первичных материй от третьего тела ко второму. Этот обратный поток создаёт проекцию третьего тела клетки на уровне второго. Проекция третьего тела изменяет качественное состояние микропространства на уровне второго тела клетки. Это, в свою очередь, приводит к большему открытию качественного барьера между вторым и третьим уровнями. При этом уменьшается степень рассеивания восходящих потоков первичных материй на качественных барьерах. И поэтому большая часть восходящих потоков первичных материй достигает соответственно второго, третьего и четвёртого тел клетки. Возрастает плотность насыщения этих тел соответствующими первичными материями и увеличение мощности обратных потоков. Когда мощность обратных потоков станет достаточно большой, они проталкивают проекцию третьего тела клетки на уровень физической клетки. Проекция третьего тела представляет собой гибрид, результат слияния первичных материй G и F и под давлением обратных потоков первичных материй «протекает» через второе тело при некотором сопротивлении.

1. Физически плотное тело клетки.
2. Второе материальное тело клетки.
3. Третье материальное тело клетки.
3'. Проекция третьего тела клетки.
4. Четвёртое материальное тело клетки.
4'. Проекция четвёртого тела клетки.
5. Плотность насыщения четвёртого тела клетки первичными материями G, F и Е.
6. Плотность насыщения третьего тела клетки первичными материями G и F.
7. Плотность насыщения второго тела клетки (G).

Рис.176

Рис.176 — проекция третьего тела клетки достигает уровня физической и накладывается на проекцию четвёртого тела. Каждая из этих проекций приносит с собой возмущения мерности микропространства. Накладываясь друг на друга, эти возмущения мерности изменяют качественное состояние микропространства внутри клетки. Изменение качественного состояния пространства создаёт условия для возникновения новых электронных связей между молекулой ДНК и ионами, атомами и т.д. внутри клетки.

1. Физически плотное тело клетки.
2. Второе материальное тело клетки.
3. Третье материальное тело клетки.
3'. Проекция третьего тела клетки.
4. Четвёртое материальное тело клетки.
4'. Проекция четвёртого тела клетки.
5. Плотность насыщения четвёртого тела клетки первичными материями G, F и Е.
6. Плотность насыщения третьего тела клетки первичными материями G и F.
7. Плотность насыщения второго тела клетки (G).

Рис.177

Рис.177 — проекции четвёртого и третьего тел на физически плотную клетку изменяют качественное состояние микропространства клетки. Дополнительные возмущения мерности, создаваемые на физическом уровне этими проекциями, накладываются друг на друга и создают суперпопозицию. В результате этого рельеф мерности внутри клетки изменяется, что создаёт условия для присоединения на внешние электронные связи молекулы ДНК ионов, атомов, свободных радикалов, ранее не имевших возможности создать данные электронные связи. Электронные оболочки молекул, атомов, ионов имеют возможность сомкнуться между собой и создать новое химическое соединение только в случае, когда они имеют соизмеримые между собой уровни собственной мерности, другими словами, их электронные оболочки лежат на одном уровне. Если различие между уровнями собственной мерности двух молекул и т.д. превышает шумовое возмущение мерности пространства, образование нового химического соединения между ними просто невозможно. Дополнительное изменение мерности микропространства, создаваемое проекциями третьего и четвёртого тел клетки на физически плотную, как уже отмечалось, изменяют рельеф мерности внутри физически плотной клетки. В результате происходит изменение уровней собственной мерности молекул внутри физически плотной клетки, в соответствии с изменением рельефа мерности, вызванным проекциями. При этом рельеф мерности внутри клетки изменяется неравномерно. Какие-то участки микропространства клетки опускаются, какие-то поднимаются. В результате, уровень собственной мерности одних молекул увеличивается, в то время, как уровень собственной мерности других — уменьшается. Это приводит к тому, что уровни собственной мерности целого ряда молекул становятся соизмеримыми, и они образуют между собой качественно новое соединение. Именно по этой причине молекула ДНК получает возможность присоединить на свои внешние электронные связи дополнительные ионы, атомы и т.д.

1. Физически плотная молекула ДНК.
2. Второе материальное тело молекулы ДНК.
3. Третье материальное тело молекулы ДНК.
3'. Проекция третьего материального тела ДНК.
4. Увеличенный участок физической молекулы ДНК.
5. Увеличенный участок второго тела ДНК.
6. Увеличенный участок третьего тела ДНК.
7. Качественный барьер между физическим и вторым материальными уровнями.
8. Качественный барьер между вторым и третьим материальными уровнями.

Рис.178

Рис.178 — вновь присоединённые к молекуле ДНК атомы увеличивают молекулярный вес молекулы и изменяют пространственную структуру. «Потяжелевшая» молекула сильнее влияет на окружающее микропространство, что приводит к большему открытию качественного барьера между физическим и вторым материальным уровнями. Это приводит к увеличению мощности восходящих потоков первичных материй за счёт уменьшения рассеивания этих потоков на качественном барьере. В результате этого на уровне второго материального тела клетки появляются дополнительные деформации, которые соответстуют пространственным изменениям молекулы ДНК, вызванным присоединёнными к ней дополнительными атомами, ионами и свободными радикалами. Присоединение их стало возможно только при наличии проекций четвёртого и третьего тел клетки на уровне физической. Изменение рельефа мерности создаётся наложением на физическую клетку дополнительных рельефов мерности, которые приносят с собой на рельеф мерности физической клетки проекции третьего и четвёртого тел клетки, которые имеют разный качественный и количественный состав, и поэтому приносимые ими изменения рельефа мерности будут отличаться, как пространственно, так и количественно. Вспомним, что проекция третьего тела образована слиянием первичных материй G и F , в то время, как проекция четвёртого — слиянием первичных материй G, F и Е. Различия в качественной структуре проекций третьего и четвёртого тел клетки и являются причиной их неадекватного (неодинакового) влияния на рельеф мерности физически плотной клетки.

1. Физически плотная молекула ДНК.
2. Второе материальное тело молекулы ДНК.
3. Третье материальное тело молекулы ДНК.
3'. Проекция третьего материального тела ДНК.
4. Увеличенный участок физической молекулы ДНК.
5. Увеличенный участок второго тела ДНК.
6. Увеличенный участок третьего тела ДНК.
7. Качественный барьер между физическим и вторым материальными уровнями.
8. Качественный барьер между вторым и третьим материальными уровнями.
9. Дополнительные атомы, присоединённые к молекуле ДНК, в результате влияния проекций третьего и четвёртого тел на мерность физической клетки.
9'. Проекция дополнительных атомов на уровне второго материального тела клетки.